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Abstract 

The problem of estimating rigid motion from projections may be characterized using a non- 
linear dynamical system, composed of the rigid motion transformation and the perspective map. 
The time derivative of the output of such a system, which is also called the "motion field", is 
bilinear in the motion parameters, and may be used to specify a subspace constraint on either 
the direction of translation or the inverse depth of the observed points. Estimating motion 
may then be formulated as an optimization task constrained on such a subspace. Heeger and 
Jepson [5], who first introduced this constraint, solve the optimization task using an extensive 
search over the possible directions of translation. 

We reformulate the optimization problem in a systems theoretic framework as the the iden- 
tification of a dynamic system in exterior differential form with parameters on a differentiable 
manifold, and use techniques which pertain to nonlinear estimation and identification theory 
to perform the optimization task in a principled manner. The general technique for addressing 
such identification problems [14] has been used successfully in addressing other problems in 
computational vision [13, 121. 

The application of the general method [14] results in a recursive and pseudo-optimal solution 
of the motion problem, which has robustness properties far superior to other existing techniques 
we have implemented. 

By releasing the constraint that the visible points lie in front of the observer, we may explain 
some psychophysical effects on the nonrigid percept of rigidly moving shapes. 

Experiments on real and synthetic image sequences show very promising results in terms of 
robustness, accuracy and computational efficiency. 

1 Visual motion estimation from a dynamic model 

Let a scene be represented by a set of N feature points in 3D space moving rigidly with respect 
to the viewer; the  visual motion problem is defined by the rigidity constraint and the perspective 

*Research funded by the California Institute of Technology, ONR grant N00014-93-1-0990 and an AT&T Founda- 
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projection equations. If Xi + [Xi Y,  z;]* are the coordinates of the ith point and x; G [xi y;]T the 
corresponding projection, we may write 

where n; represents an error in measuring the position of the projection of the point i and w 
represents an ideal perspective projection1. Solving the visual motion problem consists in estimating 
V, 0 from all the visible points, i.e. reconstructing the input of the above system from its noisy 
output. We show that it is possible to invert the above system using a technique which has been 
recently introduced in [14] for identifying systems in Exterior Differential form [2] with parameters 
on a topological manifold. 

The scheme is motivated by the work of Heeger and Jepson [6, 51 and may be considered as a 
recursive solution of their task using methods which pertain to the field of nonlinear estimation and 
identification theory. As a result, the minimization task which is the core of the subspace methods 
for recovering rigid motion, needs not to be performed by brute force search, as it is done in [5]. 
Instead, an Implicit Extended Kalman Filter (IEKF) [9, 3, 8, 141 is in charge of estimating the 
motion parameters recursively according to nonlinear prediction error criteria (for an introductory 
treatment of Prediction Error Methods (PEM) in a linear context, see for example [16]). As an 
effect, our method exploits in a pseudo-optimal manner the information coming from a long stream 
of images, making the scheme robust and computationally efficient. 

2 Mot ion reconstruct ion via (least squares) inversion constrained 
on subspaees 

Consider the following expression of the "motion field", i.e. the first derivative of the output of the 
model (1). 

where 

If we observe enough points, we have an overdetermined system which we may solve for the motion 
parameters in a least-squares sense. Call Ci A [*A; f?;], we have 

where the symbol t denotes the pseudo-inverse. Note that C; depends on the depth of the point 
Z;, which we do not know. By substituting the above expression into eq. (2), we have-an--implicit 
constraint on Zg [5],  which consists of imposing that i is the null space of the orthogonal complement 

'More articulated camera models may be employed. However, we do not address them here. 



of the range of C. We may try to approximate this constraint in a least squares sense by solving 
w.r. t Zi the following nonlinear optimization problem: 

zi = aarg min ( (k  - C(Z) 
Zi 

II = ll(I - cct>klI* 

i.e. we are looking for Z; V i = 1..  . n such that 2 is the null space of the orthogonal complement of 
the range of C. If C was invertible, the above constraint would be satisfied trivially for all motions. 
However, when 2N > 3, C C ~  has rank at most three, and hence ( I  - C C ~ )  # 0. 

2.1 Recovery of direction of translation 

Note that the minimization described above is performed with respect to  the depth of each point 
in space. However, the role of depth and translation may be interchanged, as it is evident from the 
structure of the matrix C. We may therefore "pseudo-invert" the system above with respect to depth 
and rotation and then perform the minimization with respect to  the direction of translation in s2 
(the two-sphere of radius one). For each point i we have x;(t) = [A;(x;)V(B, 4) I Bi(x)] & 1 ,  

L \ ' J  

where V E S2 is represented in local coordinates as V(B,(b). If we observe N points we may write 
i = E(0, $)[&, . . . , $, 0lT, where 

B1 

C(B, 4) 

ANV BN 

Now, proceeding in a similar way as before, we could seek for 8 , 4  which satisfy the following 
subspace algebraic constraint: 

Note that we are trying to "adapt" the orthogonal complement of 6, which is highly structured 
as a function of 8 ,4 ,  until a given vector k is its null space. Heeger and Jepson [5] solve this 
problem by minimizing the two-norm of the above constraint using a extensive search over 8,4,  or 
a sampling of the sphere. This procedure does not exploit any of the geometric structure of the 
problem. Furthermore it does not take into account the measurement noise, which enters into the 
minimization in a highly structured fashion, and is computationally expensive. Temporal coherence 
of motion is also not taken into account: at each step we want to exploit all the processing performed 
a t  the previous time instant and update recursively the motion estimates. 

The method for performing the minimization task described above in a principled way is pre- 
sented in section 3: we rephrase the problem as the identification of an exterior differential system 
with parameters on the two-sphere. The method outputs motion estimates together with their 
reliability in the form of the second order statistics of the estimation error. Such an error may be 
used in subsequent modules for estimating structure. 

2.2 Recovery of the mean distance 

In many applications it is of interest to estimate the average distance of an object from the camera 
(position of the centroid). For this case, it is sufficient to consider the minimization in eq. (4) when 



Zi = Zc V i ;  Zc is the distance of the centroid. The solution to such a problem is analogous to the 
recovery of translation, and will be presented in section 3. 

2.3 Recovery of rotation and depth 

Once the direction of translation has been recovered, we may derive the rotational velocity and 
inverse depth in a least-squares fashion from their definition: 

The motion estimates may be fed, together with the variance of their estimation error, into a 
recursive structure from motion module which processes motion error, such as for example 111, 151. 

3 Solving the subspace optimization via identifying an exterior 
differential system with parameters on a differentiable mani- 
fold 

Let us define a A [O,  $ I T ;  xi are measured up to some error, gri 2 x; + n; n; E N(0, R,,), which 
induces an error in the derivative: y;l = xi + nil. Call x the column vector obtained by stacking the 

components i ,  similarly with i. Now define CL(x, a )  2 [J - C (CTC) :x dT]  . Finally the subspace 
J 

constraint (5) may be written as dL(x ,  a)k = 0. Now 

represents a system in Exterior Differential Form. Solving for translation is equivalent to identifying 
the above exterior diflerential system with parameters on  a diflerentiable manifold (the sphere in 
this case) from the noisy data y. 

We have addressed this problem using the general methods presented in 6141. The solution is 
given by the simple iteration 

Prediction step 
&(t + llt) = &(tl t)  &(010) = a 0  

P ( t  + lit) = P(t1t) + R,(t) P(OI0) = Po 

Update step 



as from the appendix A of [Id]. 

3.1 Observability/identifiability of the method 

In order to be able to assess the convergence of the above scheme, we must prove its observabil- 
itylidentifiability It can be shown, using the analysis of IIeeger and Jepson [ 7 ] ,  that the scheme 
described above is identifiable under general position conditions. Rote that the analysis in [7] is 
carried out with different motivations; howevcr, when the results are cast into the above estima- 
tionlidentification framework, they allow inferring the identifiability of the method. 

3.2 Enforcing rigid motion: the positive depth constraint 

When est,imatilrg motion from visible points, we must enforce the fact that the ~nt:asured points 
are i n  front of the observer. This may be easily done in the prediction step by co~nputiag the mean 
distance of the centroid, as indicated above, and checking whether it is positive. If it is not, the 
prediction is reflected on the sphere (the diametral point of the state space sphere is chosen as the 
prediction). 

TifTben we do not irnpose such a constraint, the filter may converge to a rigid motion which 
corresponds t o  points nlovi~lg behind the observer, and are therefore not physically realizable. 
However, if we allow such condition to happen by releasing the positive depth constraint, and then 
feed the estimate to a structure estimation step, such as for example a simple Extended Iialman 
Filter [lo, 11, 153 initialized with points at positive depth, the result is a rubbery z'nterprctcltion of 
s t r ~ ~ c t u r e  which has been observed also in psychophysical experiments. 

The geometric interpretation of the rubbery percept is illustrated in figure 1. Note that hoth 
affine 3D motion and similarity transforrnatiorls viewed under projection ad~nit  a geometric in- 
variant, which is the absolute conic [4]. On the contrary the orientation (determinant of the 
transfor~nation) is not invariant under projection. 

4 Experimental assessment 

'Eve have experimented the scheme 011 real and noisy synthetic image sequeizces. For the sarnc data 
set used in [15], the scllerrle proves far Inore robust to the effect of measurement ~loise. Convergence 
is reached from nrbitmry initial condition and noise in the iinage pla,ne coordinates up to 10 pixel 
std.  The scheme works also with higher noise levels when properly initialized, 

The estimate of the two components of the direction of translation with 8 pixel std lloise is 
shown in figure 4, together with the estimation error. An estimate for more usual error levels (one 
pixel std) is reported in figure 3. In hoth cases the positive depth constraint bas been enforced. 
The  es ationd velocity arc plotted in figure 4. 

A typical plot of the residual function,-which is thevalue of the constraint (5) as a fuiiEtion of 
8,4 ,  is shown in figure 5. The bright area indicate a srnall residual value. The black asterisk indi- 
cates the position of tbe motion (in the local coordinates of the sphere of directiorls of translation) 
which generated the residual. 



RIGID PERCEPT "RUBBERY" PERCEPT 

Figure 1: Geometric interpretation of the "rubbery" perception: motion is estimated without 
imposing the positive depth constraint; this may result in a motion estimate which is compatible 
with a rigid structure interpretation behind the observer. Once such a structure is reflected in 
front of the observer, it gives rise to the perception of a rubbery structure rotating in the opposite 
direction of the true one. 
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Figure 2: (Left) Estimates of the two components of the direction of translation. The error in the 
image plane measurements had 8 pixel standard deviation. The initial conditions were zero for 
both components. The ground truth is in dotted lines (Right) Estimation error for the direction of 
translation. With noise of 8 pixel std in-the-data, the estimates-are still within 10 %-of-the true 
value. The positive depth constraint has been enforced. 



Carection of translabon: lplxel std noose 
0.5 1 

-'A 40 ;o So So iAo i;0 40 180 1;1o 2L 
time 

Ermr In ths dlrechon of banslabon 1 prxel sld nolss 
0 07 

Figure 3: Estimates and errors for the direction of translation when the noise in the image plane 
has a standard deviation of 1 pixel (according to the performance of common optical flow/feature 
tracking schemes. Note that convergence is reached from zero initial condition in about 10 steps. 
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Figure 4: Estimates for the components of rotational velocity 



Residual lunclian: thda = 1.084, U : -0.6478 ,Omega = 000 , noise = 0 Rdualfurclian: tWs = -1.571, phi = 0.W363 , h e g a  = 0.0872700 , noise = 0 

Figure 5: Plots of the residual function. The local coordinates of the sphere of directions of 
translation is plotted. Bright regions denote small residuals. The black asterisk is the "true" 
motion which generated the residual. Note that for small rotation (left) the minimum of the residual 
coincides with the true motion. When translation is large (right) the Euler step approximation is 
no longer valid, and the minimum moves from the true location. 

It is noted that the minimum of the residual is displaced from the true motion when the norm 
of the rotational velocity is large. This is due to the fact that we approximate the velocity of 
the projected points (motion field) with first differences; the approximation is good as long as 
R = en" = I + Q/\, i.e. as long as the norm of translation is small. 

Note the presence of local minima, as it may be seen from the mesh plot of the cost function 
(figure 6). The filter may temporarily enter into one of these. In figure 4 (right) we show the 
temporary convergence of the filter to a local minimum. In figure 4 (left) we show the convergence 
t o  the "rubbery motion interpretation" when the positive depth constraint is released. 

In the following figure 8 we show the convergence of the filter to the rubbery interpretation 
(left) and rigid motion (right) plotted on the image of the cost function. When the positive 
depth constraint is not enforced the filter may converge either to the rigid or to the rubbery 
interpretation (figure 9 left). However, when imposing the positive depth constraint, the estimate 
is reflected onto the correct rigid interpretation (figure 9 right, see also figure 10 right for the state 
estimates). 

When we feed the motion estimation to a structure from motion module estimating motion 
error, and initialized with points at positive depth, we may observe either a rigid set of points 
which move according to the correct motion (a top view of the points is shown in figure 12 left) or 
t o  a "rubbery" percept (figure 12 right). This is in accordance with the experience in psychophysical 
experiments. 

4.1 Comparison with the essential filter 

The filter proposed in this paper proves far less sensitive to noise in the measurements and t o  the 
initial conditions when compared to the essential filter [13]. In particular, for 20 observed points, 
the essential filter converges for initial conditions within 30 %, while the subspace filter converges 



Figure 6: (Left) Mesh plots of some typical residual functions: note the presence of local minima. 
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Figure 7: (Left) convergence to the local minimum corresponding to the rubbery interpretation 
when the positive depth constraint is not enforced. (Right) convergence to  a local minimum and 
then to the correct rigid motion when the positive depth constraint is enforced. 



Figure 8: Convergence to the "rubbery interpretation" (left) versus convergence to the rigid motion 
interpretation 
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Figure 9: (Left) Convergeilce when not imposing the positive depth constraint: the filter may 
converge to either the correct rigid interpretation (top) or to the local minimum corresponding the 
LLr~bbery'"interpretatioil-(bot-tom-);- I-Iowever, wl~ert-~m~es~g-~hepositiv~ept-l~-constr;tint+~ght), 
the filter only converges to the correct rigid motion interpretation. 
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Figure 10: Convergence of the filter when imposing the positive depth constraint 

'I" 
Figure 11: Comparison of the contour plots of the residual function for the subspace filter (left) 
and the essential filter (right). The slice of the residual surface is plotted along the two dimensions 
in the coordinates of the minimum. Note that the essential filter seems to  have a simpler residual, 
with no local minima except for the one corresponding to the rubbery structure. However, for the 
essential filter this is only a two-dimensional slice ofthe more complicate residual which is on a 
five-dimensional space. 



Figure 12: Convergence of a structure from motion module to  a rigid interpretation of structure 
(left) or to  a rubbery object rotating in the opposite direction (right). The plots show a top view 
of the points, with the image plane on the low end. 

from any initial condition. The essential filter is faster in converging, reaching regime in 5 to 15 
frames, while the subspace filter takes on average 10-20 frames. However, the essential filter is more 
sensitive to  noise, and the subspace filter may tolerate up to 5 times more error on the measured 
image plane coordinates, i.e. up to  more that 10 pixel std. The contour plots of the residual 
function for the subspace filter and the essential filter may be compared in figure 111. Note that for 
the essential filter only a two-dimensional slice of the five-dimensional residual is plotted. 

In the essential filter the positive depth constraint is encoded directly in the definition of the 
state space manifold (the essential manifold). The convergence of the essential filter is illustrated in 
fig. 13: on the left the convergence is shown when starting from the rubbery motion interpretation 
and imposing positive depth. On the right the positive depth constraint has been released (equiva- 
lently reflections are allowed in the essential manifold), and therefore we may observe occasionally 
convergence to  the local minimum corresponding to the rubbery interpretation. 
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4.2 Experiments with real image sequences 
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We have tested the scheme on real image sequences: the noise level achieved by the most 
common feature tracking/optical flow techniques is easily handled by the filter. As an example we 
report here the filter estimates for the rocket scene, for comparison with [13], Due to the fact that 
the filter takes about 20 frames to converge, we have doubled the sequence and used one run as 
initial condition for the second run, which is displayed in image 14. We are in the process of testing 
the scheme on longer image sequences. 
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We have formulated a new recursive scheme for estimating rigid motion under perspective via 
identifying a dynamic model in exterior differential form. The motivation comes from Heeger and 
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Figure 13: Convergence of the essential filter: (left) the filter imposes automatically the positive 
depth constraint; even starting from the rubbery state, the filter switches to  the correct estimate. 
(Left) Releasing the positive depth constraint, it is possible for the filter to converge to the rubbery 
interpretation. 

Figure 14: (Left-)-Estimate of the-direction-oft~~anslation_br~the~ock& scene. (Rig_ht_LOne image 
of the rocket scene. 



Jepson [5], who propose to view motion estimation as an optimization problem constrained to 
subspace. They solve the minimization by extensive search. 

Using results from nonlinear estimation and identification theory, we formulate a motion esti- 
mator which is fast, computationally efficient, accurate and more robust than any recursive motion 
estimation scheme we have implemented. Extensive experiments have been performed that high- 
light such features. 
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